3.6.82 \(\int \frac {a+b \tan (e+f x)}{\sqrt {d \sec (e+f x)}} \, dx\) [582]

Optimal. Leaf size=58 \[ -\frac {2 b}{f \sqrt {d \sec (e+f x)}}+\frac {2 a E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{f \sqrt {\cos (e+f x)} \sqrt {d \sec (e+f x)}} \]

[Out]

-2*b/f/(d*sec(f*x+e))^(1/2)+2*a*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticE(sin(1/2*f*x+1/2*e),2
^(1/2))/f/cos(f*x+e)^(1/2)/(d*sec(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 58, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3567, 3856, 2719} \begin {gather*} \frac {2 a E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{f \sqrt {\cos (e+f x)} \sqrt {d \sec (e+f x)}}-\frac {2 b}{f \sqrt {d \sec (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Tan[e + f*x])/Sqrt[d*Sec[e + f*x]],x]

[Out]

(-2*b)/(f*Sqrt[d*Sec[e + f*x]]) + (2*a*EllipticE[(e + f*x)/2, 2])/(f*Sqrt[Cos[e + f*x]]*Sqrt[d*Sec[e + f*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 3567

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*((d*Sec[
e + f*x])^m/(f*m)), x] + Dist[a, Int[(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && (IntegerQ[2
*m] || NeQ[a^2 + b^2, 0])

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \frac {a+b \tan (e+f x)}{\sqrt {d \sec (e+f x)}} \, dx &=-\frac {2 b}{f \sqrt {d \sec (e+f x)}}+a \int \frac {1}{\sqrt {d \sec (e+f x)}} \, dx\\ &=-\frac {2 b}{f \sqrt {d \sec (e+f x)}}+\frac {a \int \sqrt {\cos (e+f x)} \, dx}{\sqrt {\cos (e+f x)} \sqrt {d \sec (e+f x)}}\\ &=-\frac {2 b}{f \sqrt {d \sec (e+f x)}}+\frac {2 a E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{f \sqrt {\cos (e+f x)} \sqrt {d \sec (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.32, size = 54, normalized size = 0.93 \begin {gather*} \frac {-2 b \sqrt {\cos (e+f x)}+2 a E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{f \sqrt {\cos (e+f x)} \sqrt {d \sec (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Tan[e + f*x])/Sqrt[d*Sec[e + f*x]],x]

[Out]

(-2*b*Sqrt[Cos[e + f*x]] + 2*a*EllipticE[(e + f*x)/2, 2])/(f*Sqrt[Cos[e + f*x]]*Sqrt[d*Sec[e + f*x]])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.61, size = 916, normalized size = 15.79

method result size
risch \(-\frac {i \left (-i b +a \right ) \sqrt {2}}{f \sqrt {\frac {d \,{\mathrm e}^{i \left (f x +e \right )}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}}-\frac {i a \left (-\frac {2 \left (d \,{\mathrm e}^{2 i \left (f x +e \right )}+d \right )}{d \sqrt {{\mathrm e}^{i \left (f x +e \right )} \left (d \,{\mathrm e}^{2 i \left (f x +e \right )}+d \right )}}+\frac {i \sqrt {-i \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (f x +e \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (f x +e \right )}}\, \left (-2 i \EllipticE \left (\sqrt {-i \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )+i \EllipticF \left (\sqrt {-i \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )\right )}{\sqrt {d \,{\mathrm e}^{3 i \left (f x +e \right )}+d \,{\mathrm e}^{i \left (f x +e \right )}}}\right ) \sqrt {2}\, \sqrt {d \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right ) {\mathrm e}^{i \left (f x +e \right )}}}{f \sqrt {\frac {d \,{\mathrm e}^{i \left (f x +e \right )}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )}\) \(306\)
default \(\text {Expression too large to display}\) \(916\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(f*x+e))/(d*sec(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/f*(cos(f*x+e)-1)*(4*I*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+
e)+1))^(1/2)*EllipticF(I*(cos(f*x+e)-1)/sin(f*x+e),I)*cos(f*x+e)^2*sin(f*x+e)*a-4*I*(-cos(f*x+e)/(cos(f*x+e)+1
)^2)^(1/2)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticE(I*(cos(f*x+e)-1)/sin(f*x+e),I)
*cos(f*x+e)^2*sin(f*x+e)*a+8*I*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(
f*x+e)+1))^(1/2)*EllipticF(I*(cos(f*x+e)-1)/sin(f*x+e),I)*cos(f*x+e)*sin(f*x+e)*a-8*I*(-cos(f*x+e)/(cos(f*x+e)
+1)^2)^(1/2)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticE(I*(cos(f*x+e)-1)/sin(f*x+e),
I)*cos(f*x+e)*sin(f*x+e)*a+4*I*a*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*(-cos(f*x+e)/(cos(
f*x+e)+1)^2)^(1/2)*EllipticF(I*(cos(f*x+e)-1)/sin(f*x+e),I)*sin(f*x+e)-4*I*a*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x
+e)/(cos(f*x+e)+1))^(1/2)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*EllipticE(I*(cos(f*x+e)-1)/sin(f*x+e),I)*sin(f*
x+e)-4*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)^3*a-4*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)^2
*sin(f*x+e)*b-4*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)*sin(f*x+e)*b-b*cos(f*x+e)*ln(-(2*cos(f*x+e)^2*
(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f
*x+e)^2)*sin(f*x+e)+b*ln(-2*(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(
-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)*cos(f*x+e)*sin(f*x+e)+4*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1
/2)*cos(f*x+e)*a)/(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)/cos(f*x+e)/sin(f*x+e)^3/(d/cos(f*x+e))^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))/(d*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((b*tan(f*x + e) + a)/sqrt(d*sec(f*x + e)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.12, size = 95, normalized size = 1.64 \begin {gather*} \frac {i \, \sqrt {2} a \sqrt {d} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) - i \, \sqrt {2} a \sqrt {d} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right ) - 2 \, b \sqrt {\frac {d}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{d f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))/(d*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

(I*sqrt(2)*a*sqrt(d)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) + I*sin(f*x + e))) - I*sqr
t(2)*a*sqrt(d)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) - I*sin(f*x + e))) - 2*b*sqrt(d/
cos(f*x + e))*cos(f*x + e))/(d*f)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a + b \tan {\left (e + f x \right )}}{\sqrt {d \sec {\left (e + f x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))/(d*sec(f*x+e))**(1/2),x)

[Out]

Integral((a + b*tan(e + f*x))/sqrt(d*sec(e + f*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))/(d*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e) + a)/sqrt(d*sec(f*x + e)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {a+b\,\mathrm {tan}\left (e+f\,x\right )}{\sqrt {\frac {d}{\cos \left (e+f\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*tan(e + f*x))/(d/cos(e + f*x))^(1/2),x)

[Out]

int((a + b*tan(e + f*x))/(d/cos(e + f*x))^(1/2), x)

________________________________________________________________________________________